If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+19.6x=0
a = 4.9; b = 19.6; c = 0;
Δ = b2-4ac
Δ = 19.62-4·4.9·0
Δ = 384.16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19.6)-\sqrt{384.16}}{2*4.9}=\frac{-19.6-\sqrt{384.16}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19.6)+\sqrt{384.16}}{2*4.9}=\frac{-19.6+\sqrt{384.16}}{9.8} $
| 1/4*x+x=3+1/2*x | | -3(4-5x)=6x+60 | | 25+4(2x+5)=-62 | | 3/4+-5/4m=113/24 | | 14=-d-(-5)/7 | | n/45=n/15 | | 2h+2=2h+2 | | -13s+20=-1-20s | | 20-17-6m=-6m+3 | | 15/45=n/15= | | -20-2u=14-4u | | 6n+6=6+6n | | 17v+11=11 | | (6x)(x-23)=180 | | 18-4=2d+3+16d | | 0.13+0.10t=0.82t-0.83 | | 19-4k=-11-6k | | 8k+1=8k+8 | | 8-8w=-8w-6 | | -5w/6=-35 | | -3x+14=-2(4x-7) | | 6z+4=3z–11 | | -3x+14=-2(4x-7 | | -4d+7=7-4d | | y+7=-1+y | | 4x(x+1)=8 | | -2+10g=-6+10 | | 6v+7=-5-6v | | -2x+32=18 | | -6t+10=-6t-9 | | 7/3x+x=111/14 | | -2xx32=18 |